dpnp.linalg.norm
- dpnp.linalg.norm(x, ord=None, axis=None, keepdims=False)[source]
Matrix or vector norm.
For full documentation refer to
numpy.linalg.norm.- Parameters:
x ({dpnp.ndarray, usm_ndarray}) -- Input array. If axis is
None, x must be 1-D or 2-D, unless ord isNone. If both axis and ord areNone, the 2-norm ofx.ravelwill be returned.ord ({int, float, inf, -inf, "fro", "nuc"}, optional) -- Norm type. inf means dpnp's inf object. The default is
None.axis ({None, int, 2-tuple of ints}, optional) -- If axis is an integer, it specifies the axis of x along which to compute the vector norms. If axis is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If axis is
Nonethen either a vector norm (when x is 1-D) or a matrix norm (when x is 2-D) is returned. Default:False.keepdims (bool, optional) -- If this is set to
True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original x. Default:False.
- Returns:
out -- Norm of the matrix or vector(s).
- Return type:
dpnp.ndarray
Examples
>>> import dpnp as np >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> np.linalg.norm(a) array(7.74596669) >>> np.linalg.norm(b) array(7.74596669) >>> np.linalg.norm(b, 'fro') array(7.74596669) >>> np.linalg.norm(a, np.inf) array(4.) >>> np.linalg.norm(b, np.inf) array(9.) >>> np.linalg.norm(a, -np.inf) array(0.) >>> np.linalg.norm(b, -np.inf) array(2.)
>>> np.linalg.norm(a, 1) array(20.) >>> np.linalg.norm(b, 1) array(7.) >>> np.linalg.norm(a, -1) array(0.) >>> np.linalg.norm(b, -1) array(6.) >>> np.linalg.norm(a, 2) array(7.74596669) >>> np.linalg.norm(b, 2) array(7.34846923)
>>> np.linalg.norm(a, -2) array(0.) >>> np.linalg.norm(b, -2) array(4.35106603e-18) # may vary >>> np.linalg.norm(a, 3) array(5.84803548) # may vary >>> np.linalg.norm(a, -3) array(0.)
Using the axis argument to compute vector norms:
>>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> np.linalg.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> np.linalg.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> np.linalg.norm(c, ord=1, axis=1) array([ 6., 6.])
Using the axis argument to compute matrix norms:
>>> m = np.arange(8).reshape(2,2,2) >>> np.linalg.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> np.linalg.norm(m[0, :, :]), np.linalg.norm(m[1, :, :]) (array(3.74165739), array(11.22497216))