dpnp.cov
- dpnp.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=None, *, dtype=None)[source]
Estimate a covariance matrix, given data and weights.
For full documentation refer to
numpy.cov.- Returns:
out -- The covariance matrix of the variables.
- Return type:
dpnp.ndarray
Limitations
Input array
mis supported asdpnp.ndarray. Dimension of input arraymis limited bym.ndim <= 2. Size and shape of input arrays are supported to be equal. Parameter y is supported only with default valueNone. Parameter bias is supported only with default valueFalse. Parameter ddof is supported only with default valueNone. Parameter fweights is supported only with default valueNone. Parameter aweights is supported only with default valueNone. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP Available array data types.See also
dpnp.corrcoefNormalized covariance matrix
Examples
>>> import dpnp as np >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x.shape (2, 3) >>> [i for i in x] [0, 1, 2, 2, 1, 0] >>> out = np.cov(x) >>> out.shape (2, 2) >>> [i for i in out] [1.0, -1.0, -1.0, 1.0]