dpnp.bitwise_and
- dpnp.bitwise_and(x1, x2, out=None, where=True, order='K', dtype=None, subok=True, **kwargs)
Computes the bitwise AND of the underlying binary representation of each element x1_i of the input array x1 with the respective element x2_i of the input array x2.
For full documentation refer to
numpy.bitwise_and.- Parameters:
x1 ({dpnp.ndarray, usm_ndarray, scalar}) -- First input array, expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time.
x2 ({dpnp.ndarray, usm_ndarray, scalar}) -- Second input array, also expected to have integer or boolean data type. Both inputs x1 and x2 can not be scalars at the same time.
out ({None, dpnp.ndarray, usm_ndarray}, optional) -- Output array to populate. Array must have the correct shape and the expected data type. Default:
None.order ({"C", "F", "A", "K"}, optional) -- Memory layout of the newly output array, if parameter out is
None. Default:"K".
- Returns:
out -- An array containing the element-wise results. The data type of the returned array is determined by the Type Promotion Rules.
- Return type:
dpnp.ndarray
Limitations
Parameters where and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise
NotImplementedErrorexception will be raised.See also
dpnp.logical_andCompute the truth value of
x1ANDx2element-wise.dpnp.bitwise_orCompute the bit-wise OR of two arrays element-wise.
dpnp.bitwise_xorCompute the bit-wise XOR of two arrays element-wise.
Examples
>>> import dpnp as np >>> x1 = np.array([2, 5, 255]) >>> x2 = np.array([3,14,16]) >>> np.bitwise_and(x1, x2) [2, 4, 16]
>>> a = np.array([True, True]) >>> b = np.array([False, True]) >>> np.bitwise_and(a, b) array([False, True])
The
&operator can be used as a shorthand forbitwise_andondpnp.ndarray.>>> x1 & x2 array([ 2, 4, 16])