dpnp.take_along_axis
- dpnp.take_along_axis(a, indices, axis)[source]
Take values from the input array by matching 1d index and data slices.
For full documentation refer to
numpy.take_along_axis
.- Parameters:
a ({dpnp.ndarray, usm_ndarray}, (Ni..., M, Nk...)) – Source array
indices ({dpnp.ndarray, usm_ndarray}, (Ni..., J, Nk...)) – Indices to take along each 1d slice of a. This must match the dimension of the input array, but dimensions
Ni
andNj
only need to broadcast against a.axis (int) – The axis to take 1d slices along. If axis is
None
, the input array is treated as if it had first been flattened to 1d, for consistency with sort and argsort.
- Returns:
out – The indexed result.
- Return type:
dpnp.ndarray
See also
dpnp.take
Take along an axis, using the same indices for every 1d slice.
dpnp.put_along_axis
Put values into the destination array by matching 1d index and data slices.
dpnp.argsort
Return the indices that would sort an array.
Examples
For this sample array
>>> import dpnp as np >>> a = np.array([[10, 30, 20], [60, 40, 50]])
We can sort either by using sort directly, or argsort and this function
>>> np.sort(a, axis=1) array([[10, 20, 30], [40, 50, 60]]) >>> ai = np.argsort(a, axis=1) >>> ai array([[0, 2, 1], [1, 2, 0]]) >>> np.take_along_axis(a, ai, axis=1) array([[10, 20, 30], [40, 50, 60]])
The same works for max and min, if you maintain the trivial dimension with
keepdims
:>>> np.max(a, axis=1, keepdims=True) array([[30], [60]]) >>> ai = np.argmax(a, axis=1, keepdims=True) >>> ai array([[1], [0]]) >>> np.take_along_axis(a, ai, axis=1) array([[30], [60]])
If we want to get the max and min at the same time, we can stack the indices first
>>> ai_min = np.argmin(a, axis=1, keepdims=True) >>> ai_max = np.argmax(a, axis=1, keepdims=True) >>> ai = np.concatenate([ai_min, ai_max], axis=1) >>> ai array([[0, 1], [1, 0]]) >>> np.take_along_axis(a, ai, axis=1) array([[10, 30], [40, 60]])