dpnp.maximum
- dpnp.maximum(x1, x2, /, out=None, *, where=True, order='K', dtype=None, subok=True, **kwargs)[source]
Element-wise maximum of array elements.
For full documentation refer to
numpy.maximum
.- Returns:
out – The maximum of x1 and x2, element-wise, propagating NaNs.
- Return type:
dpnp.ndarray
Limitations
Parameters x1 and x2 are supported as either scalar,
dpnp.ndarray
ordpctl.tensor.usm_ndarray
, but both x1 and x2 can not be scalars at the same time. Parameters where, dtype and subok are supported with their default values. Keyword argument kwargs is currently unsupported. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by supported DPNP Data types.See also
dpnp.minimum
Element-wise minimum of two arrays, propagates NaNs.
dpnp.fmax
Element-wise maximum of two arrays, ignores NaNs.
dpnp.max
The maximum value of an array along a given axis, propagates NaNs.
dpnp.nanmax
The maximum value of an array along a given axis, ignores NaNs.
dpnp.fmin
Element-wise minimum of two arrays, ignores NaNs.
dpnp.min
The minimum value of an array along a given axis, propagates NaNs.
dpnp.nanmin
The minimum value of an array along a given axis, ignores NaNs.
Examples
>>> import dpnp as np >>> x1 = np.array([2, 3, 4]) >>> x2 = np.array([1, 5, 2]) >>> np.maximum(x1, x2) array([2, 5, 4])
>>> x1 = np.eye(2) >>> x2 = np.array([0.5, 2]) >>> np.maximum(x1, x2) # broadcasting array([[1. , 2. ], [0.5, 2. ]])
>>> x1 = np.array([np.nan, 0, np.nan]) >>> x2 = np.array([0, np.nan, np.nan]) >>> np.maximum(x1, x2) array([nan, nan, nan])
>>> np.maximum(np.array(np.Inf), 1) array(inf)