dpnp.logaddexp
- dpnp.logaddexp(x1, x2, /, out=None, *, where=True, order='K', dtype=None, subok=True, **kwargs)[source]
Calculates
log(exp(x1) + exp(x2))
, element-wise.For full documentation refer to
numpy.logaddexp
.- Returns:
out – Logarithm of
exp(x1) + exp(x2)
, element-wise.- Return type:
dpnp.ndarray
Limitations
Parameters x1 and x2 are supported as either scalar,
dpnp.ndarray
ordpctl.tensor.usm_ndarray
, but both x1 and x2 can not be scalars at the same time. Parameters where, dtype and subok are supported with their default values. Keyword arguments kwargs are currently unsupported. Otherwise the function will be executed sequentially on CPU. Input array data types are limited by real-valued data types.See also
Examples
>>> import dpnp as np >>> prob1 = np.log(np.array(1e-50)) >>> prob2 = np.log(np.array(2.5e-50)) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 array(-113.87649168) >>> np.exp(prob12) array(3.5e-50)