dpnp.histogram
- dpnp.histogram(a, bins=10, range=None, density=None, weights=None)[source]
Compute the histogram of a dataset.
For full documentation refer to
numpy.histogram
.Examples
>>> import dpnp >>> dpnp.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> dpnp.histogram(dpnp.arange(4), bins=dpnp.arange(5), density=True) (array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> dpnp.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = dpnp.arange(5) >>> hist, bin_edges = dpnp.histogram(a, density=True) >>> hist array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> res = dpnp.sum(hist * dpnp.diff(bin_edges)) >>> print(res) 1.0