dpnp.ascontiguousarray
- dpnp.ascontiguousarray(a, dtype=None, *, like=None, device=None, usm_type=None, sycl_queue=None)[source]
Return a contiguous array (ndim >= 1) in memory (C order).
For full documentation refer to
numpy.ascontiguousarray
.- Parameters:
a (array_like) – Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
dtype (dtype, optional) – The desired dtype for the array. If not given, a default dtype will be used that can represent the values (by considering Promotion Type Rule and device capabilities when necessary).
device ({None, string, SyclDevice, SyclQueue}, optional) – An array API concept of device where the output array is created. The device can be
None
(the default), an OneAPI filter selector string, an instance ofdpctl.SyclDevice
corresponding to a non-partitioned SYCL device, an instance ofdpctl.SyclQueue
, or a Device object returned bydpnp.dpnp_array.dpnp_array.device
property.usm_type ({None, "device", "shared", "host"}, optional) – The type of SYCL USM allocation for the output array. Default is
None
.sycl_queue ({None, SyclQueue}, optional) – A SYCL queue to use for output array allocation and copying.
- Returns:
out – Contiguous array of same shape and content as a, with type dtype if specified.
- Return type:
dpnp.ndarray
Limitations
Parameter like is supported only with default value
None
. Otherwise, the function raises NotImplementedError exception.See also
dpnp.asfortranarray
Convert input to an ndarray with column-major memory order.
dpnp.require
Return an ndarray that satisfies requirements.
dpnp.ndarray.flags
Information about the memory layout of the array.
Examples
>>> import dpnp as np >>> x = np.ones((2, 3), order='F') >>> x.flags['F_CONTIGUOUS'] True
Calling
ascontiguousarray
makes a C-contiguous copy:>>> y = np.ascontiguousarray(x) >>> y.flags['F_CONTIGUOUS'] True >>> x is y False
Now, starting with a C-contiguous array:
>>> x = np.ones((2, 3), order='C') >>> x.flags['C_CONTIGUOUS'] True
Then, calling
ascontiguousarray
returns the same object:>>> y = np.ascontiguousarray(x) >>> x is y True
Creating an array on a different device or with a specified usm_type
>>> x0 = np.asarray([1, 2, 3]) >>> x = np.ascontiguousarray(x0) # default case >>> x, x.device, x.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'device')
>>> y = np.ascontiguousarray(x0, device="cpu") >>> y, y.device, y.usm_type (array([1, 2, 3]), Device(opencl:cpu:0), 'device')
>>> z = np.ascontiguousarray(x0, usm_type="host") >>> z, z.device, z.usm_type (array([1, 2, 3]), Device(level_zero:gpu:0), 'host')