Constants ========= DPNP includes several constants: .. currentmodule:: dpnp .. autodata:: DLDeviceType .. data:: e Euler's constant, base of natural logarithms, Napier's constant. ``e = 2.71828182845904523536028747135266249775724709369995...`` .. rubric:: See Also :func:`exp` : Exponential function :func:`log` : Natural logarithm .. rubric:: References https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 .. data:: euler_gamma ``γ = 0.5772156649015328606065120900824024310421...`` .. rubric:: References https://en.wikipedia.org/wiki/Euler%27s_constant .. data:: inf IEEE 754 floating point representation of (positive) infinity. .. rubric:: Returns y : float A floating point representation of positive infinity. .. rubric:: See Also :func:`isinf` : Shows which elements are positive or negative infinity :func:`isposinf` : Shows which elements are positive infinity :func:`isneginf` : Shows which elements are negative infinity :func:`isnan` : Shows which elements are Not a Number :func:`isfinite` : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) .. rubric:: Notes DPNP uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. .. rubric:: Examples .. code-block:: python >>> import dpnp as np >>> np.inf inf >>> np.array([1]) / 0.0 array([inf]) .. data:: nan IEEE 754 floating point representation of Not a Number (NaN). .. rubric:: Returns y : A floating point representation of Not a Number. .. rubric:: See Also :func:`isnan` : Shows which elements are Not a Number :func:`isfinite` : Shows which elements are finite (not one of Not a Number, positive infinity and negative infinity) .. rubric:: Notes DPNP uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. .. rubric:: Examples .. code-block:: python >>> import dpnp as np >>> np.nan nan >>> np.log(np.array(-1)) array(nan) >>> np.log(np.array([-1, 1, 2])) array([ nan, 0. , 0.69314718]) .. data:: newaxis A convenient alias for *None*, useful for indexing arrays. .. rubric:: Examples .. code-block:: python >>> import dpnp as np >>> np.newaxis is None True >>> x = np.arange(3) >>> x array([0, 1, 2]) >>> x[:, np.newaxis] array([[0], [1], [2]]) >>> x[:, np.newaxis, np.newaxis] array([[[0]], [[1]], [[2]]]) >>> x[:, np.newaxis] * x array([[0, 0, 0], [0, 1, 2], [0, 2, 4]]) Outer product, same as ``outer(x, y)``: >>> y = np.arange(3, 6) >>> x[:, np.newaxis] * y array([[ 0, 0, 0], [ 3, 4, 5], [ 6, 8, 10]]) ``x[np.newaxis, :]`` is equivalent to ``x[np.newaxis]`` and ``x[None]``: >>> x[np.newaxis, :].shape (1, 3) >>> x[np.newaxis].shape (1, 3) >>> x[None].shape (1, 3) >>> x[:, np.newaxis].shape (3, 1) .. data:: pi ``pi = 3.1415926535897932384626433...`` .. rubric:: References https://en.wikipedia.org/wiki/Pi