# -*- coding: utf-8 -*-
# *****************************************************************************
# Copyright (c) 2016-2025, Intel Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.
# *****************************************************************************
"""
Interface of the Binary operations of the DPNP
Notes
-----
This module is a face or public interface file for the library
it contains:
- Interface functions
- documentation for the functions
- The functions parameters check
"""
# pylint: disable=protected-access
import dpctl.tensor._tensor_elementwise_impl as ti
import numpy
from dpnp.dpnp_algo.dpnp_elementwise_common import DPNPBinaryFunc, DPNPUnaryFunc
__all__ = [
"binary_repr",
"bitwise_and",
"bitwise_invert",
"bitwise_left_shift",
"bitwise_not",
"bitwise_or",
"bitwise_right_shift",
"bitwise_xor",
"invert",
"left_shift",
"right_shift",
]
[docs]
def binary_repr(num, width=None):
"""
Return the binary representation of the input number as a string.
For negative numbers, if `width` is not given, a minus sign is added to the
front. If `width` is given, the two's complement of the number is returned,
with respect to that width.
In a two's-complement system negative numbers are represented by the two's
complement of the absolute value. A N-bit two's-complement system can
represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`.
For full documentation refer to :obj:`numpy.binary_repr`.
Parameters
----------
num : int
Only an integer decimal number can be used.
width : {None, int}, optional
The length of the returned string if `num` is positive, or the length
of the two's complement if `num` is negative, provided that `width` is
at least a sufficient number of bits for `num` to be represented in the
designated form. If the `width` value is insufficient, an error is
raised.
Default: ``None``.
Returns
-------
bin : str
Binary representation of `num` or two's complement of `num`.
See Also
--------
:obj:`dpnp.base_repr` : Return a string representation of a number in the
given base system.
bin : Python's built-in binary representation generator of an integer.
Notes
-----
:obj:`dpnp.binary_repr` is equivalent to using :obj:`dpnp.base_repr` with
base 2, but significantly faster.
Examples
--------
>>> import numpy as np
>>> np.binary_repr(3)
'11'
>>> np.binary_repr(-3)
'-11'
>>> np.binary_repr(3, width=4)
'0011'
The two's complement is returned when the input number is negative and
`width` is specified:
>>> np.binary_repr(-3, width=3)
'101'
>>> np.binary_repr(-3, width=5)
'11101'
"""
return numpy.binary_repr(num, width)
_BITWISE_AND_DOCSTRING = """
Computes the bitwise AND of the underlying binary representation of each
element `x1_i` of the input array `x1` with the respective element `x2_i`
of the input array `x2`.
For full documentation refer to :obj:`numpy.bitwise_and`.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray, scalar}
First input array, expected to have integer or boolean data type.
Both inputs `x1` and `x2` can not be scalars at the same time.
x2 : {dpnp.ndarray, usm_ndarray, scalar}
Second input array, also expected to have integer or boolean data
type. Both inputs `x1` and `x2` can not be scalars at the same time.
If ``x1.shape != x2.shape``, they must be broadcastable to a common shape
(which becomes the shape of the output).
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results. The data type
of the returned array is determined by the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.logical_and` : Compute the truth value of ``x1`` AND ``x2`` element-wise.
:obj:`dpnp.bitwise_or`: Compute the bit-wise OR of two arrays element-wise.
:obj:`dpnp.bitwise_xor` : Compute the bit-wise XOR of two arrays element-wise.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([3, 14, 16])
>>> np.bitwise_and(x1, x2)
array([ 2, 4, 16])
>>> a = np.array([True, True])
>>> b = np.array([False, True])
>>> np.bitwise_and(a, b)
array([False, True])
The ``&`` operator can be used as a shorthand for ``bitwise_and`` on
:class:`dpnp.ndarray`.
>>> x1 & x2
array([ 2, 4, 16])
The number 13 is represented by ``00001101``. Likewise, 17 is represented by
``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1:
>>> np.bitwise_and(np.array(13), 17)
array(1)
>>> np.bitwise_and(np.array(14), 13)
array(12)
>>> np.binary_repr(12)
'1100'
>>> np.bitwise_and(np.array([14, 3]), 13)
array([12, 1])
"""
bitwise_and = DPNPBinaryFunc(
"bitwise_and",
ti._bitwise_and_result_type,
ti._bitwise_and,
_BITWISE_AND_DOCSTRING,
binary_inplace_fn=ti._bitwise_and_inplace,
)
_BITWISE_OR_DOCSTRING = """
Computes the bitwise OR of the underlying binary representation of each
element `x1_i` of the input array `x1` with the respective element `x2_i`
of the input array `x2`.
For full documentation refer to :obj:`numpy.bitwise_or`.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray, scalar}
First input array, expected to have integer or boolean data type.
Both inputs `x1` and `x2` can not be scalars at the same time.
x2 : {dpnp.ndarray, usm_ndarray, scalar}
Second input array, also expected to have integer or boolean data
type. Both inputs `x1` and `x2` can not be scalars at the same time.
If ``x1.shape != x2.shape``, they must be broadcastable to a common shape
(which becomes the shape of the output).
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results. The data type
of the returned array is determined by the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.logical_or` : Compute the truth value of ``x1`` OR ``x2`` element-wise.
:obj:`dpnp.bitwise_and`: Compute the bit-wise AND of two arrays element-wise.
:obj:`dpnp.bitwise_xor` : Compute the bit-wise XOR of two arrays element-wise.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([4])
>>> np.bitwise_or(x1, x2)
array([ 6, 5, 255])
The ``|`` operator can be used as a shorthand for ``bitwise_or`` on
:class:`dpnp.ndarray`.
>>> x1 | x2
array([ 6, 5, 255])
The number 13 has the binary representation ``00001101``. Likewise, 16 is
represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``00011101``,
or 29:
>>> np.bitwise_or(np.array(13), 16)
array(29)
>>> np.binary_repr(29)
'11101'
"""
bitwise_or = DPNPBinaryFunc(
"bitwise_or",
ti._bitwise_or_result_type,
ti._bitwise_or,
_BITWISE_OR_DOCSTRING,
binary_inplace_fn=ti._bitwise_or_inplace,
)
_BITWISE_XOR_DOCSTRING = """
Computes the bitwise XOR of the underlying binary representation of each
element `x1_i` of the input array `x1` with the respective element `x2_i`
of the input array `x2`.
For full documentation refer to :obj:`numpy.bitwise_xor`.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray, scalar}
First input array, expected to have integer or boolean data type.
Both inputs `x1` and `x2` can not be scalars at the same time.
x2 : {dpnp.ndarray, usm_ndarray, scalar}
Second input array, also expected to have integer or boolean data
type. Both inputs `x1` and `x2` can not be scalars at the same time.
If ``x1.shape != x2.shape``, they must be broadcastable to a common shape
(which becomes the shape of the output).
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results. The data type
of the returned array is determined by the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.logical_xor` : Compute the truth value of ``x1`` XOR `x2`, element-wise.
:obj:`dpnp.bitwise_and`: Compute the bit-wise AND of two arrays element-wise.
:obj:`dpnp.bitwise_or` : Compute the bit-wise OR of two arrays element-wise.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
>>> x1 = np.array([31, 3])
>>> x2 = np.array([5, 6])
>>> np.bitwise_xor(x1, x2)
array([26, 5])
>>> a = np.array([True, True])
>>> b = np.array([False, True])
>>> np.bitwise_xor(a, b)
array([ True, False])
The ``^`` operator can be used as a shorthand for ``bitwise_xor`` on
:class:`dpnp.ndarray`.
>>> a ^ b
array([ True, False])
The number 13 is represented by ``00001101``. Likewise, 17 is represented by
``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28:
>>> np.bitwise_xor(np.array(13), 17)
array(28)
>>> np.binary_repr(28)
'11100'
"""
bitwise_xor = DPNPBinaryFunc(
"bitwise_xor",
ti._bitwise_xor_result_type,
ti._bitwise_xor,
_BITWISE_XOR_DOCSTRING,
binary_inplace_fn=ti._bitwise_xor_inplace,
)
_INVERT_DOCSTRING = """
Inverts (flips) each bit for each element `x_i` of the input array `x`.
Note that :obj:`dpnp.bitwise_invert` is an alias of :obj:`dpnp.invert`.
For full documentation refer to :obj:`numpy.invert`.
Parameters
----------
x : {dpnp.ndarray, usm_ndarray}
Input array, expected to have integer or boolean data type.
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results.
The data type of the returned array is same as the data type of the
input array.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.bitwise_and`: Compute the bit-wise AND of two arrays element-wise.
:obj:`dpnp.bitwise_or` : Compute the bit-wise OR of two arrays element-wise.
:obj:`dpnp.bitwise_xor` : Compute the bit-wise XOR of two arrays element-wise.
:obj:`dpnp.logical_not` : Compute the truth value of NOT x element-wise.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
The number 13 is represented by ``00001101``. The invert or bit-wise NOT of 13
is then:
>>> x = np.array([13])
>>> np.invert(x)
array([-14])
>>> np.binary_repr(-14, width=8)
'11110010'
>>> a = np.array([True, False])
>>> np.invert(a)
array([False, True])
The ``~`` operator can be used as a shorthand for ``invert`` on
:class:`dpnp.ndarray`.
>>> ~a
array([False, True])
"""
invert = DPNPUnaryFunc(
"invert",
ti._bitwise_invert_result_type,
ti._bitwise_invert,
_INVERT_DOCSTRING,
)
bitwise_not = invert # bitwise_not is an alias for invert
bitwise_invert = invert # bitwise_invert is an alias for invert
_LEFT_SHIFT_DOCSTRING = """
Shifts the bits of each element `x1_i` of the input array x1 to the left by
appending `x2_i` (i.e., the respective element in the input array `x2`) zeros to
the right of `x1_i`.
Note that :obj:`dpnp.bitwise_left_shift` is an alias of :obj:`dpnp.left_shift`.
For full documentation refer to :obj:`numpy.left_shift`.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray, scalar}
First input array, expected to have integer data type.
Both inputs `x1` and `x2` can not be scalars at the same time.
x2 : {dpnp.ndarray, usm_ndarray, scalar}
Second input array, also expected to have integer data type.
Each element must be greater than or equal to ``0``.
Both inputs `x1` and `x2` can not be scalars at the same time.
If ``x1.shape != x2.shape``, they must be broadcastable to a common shape
(which becomes the shape of the output).
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results. The data type
of the returned array is determined by the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.right_shift` : Shift the bits of an integer to the right.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
>>> x1 = np.array([5])
>>> x2 = np.array([1, 2, 3])
>>> np.left_shift(x1, x2)
array([10, 20, 40])
The ``<<`` operator can be used as a shorthand for ``left_shift`` on
:class:`dpnp.ndarray`.
>>> x1 << x2
array([10, 20, 40])
>>> np.binary_repr(5)
'101'
>>> np.left_shift(np.array(5), 2)
array(20)
>>> np.binary_repr(20)
'10100'
"""
left_shift = DPNPBinaryFunc(
"left_shift",
ti._bitwise_left_shift_result_type,
ti._bitwise_left_shift,
_LEFT_SHIFT_DOCSTRING,
binary_inplace_fn=ti._bitwise_left_shift_inplace,
)
bitwise_left_shift = left_shift # bitwise_left_shift is an alias for left_shift
_RIGHT_SHIFT_DOCSTRING = """
Shifts the bits of each element `x1_i` of the input array `x1` to the right
according to the respective element `x2_i` of the input array `x2`.
Note that :obj:`dpnp.bitwise_right_shift` is an alias of :obj:`dpnp.right_shift`.
For full documentation refer to :obj:`numpy.right_shift`.
Parameters
----------
x1 : {dpnp.ndarray, usm_ndarray, scalar}
First input array, expected to have integer data type.
Both inputs `x1` and `x2` can not be scalars at the same time.
x2 : {dpnp.ndarray, usm_ndarray, scalar}
Second input array, also expected to have integer data type.
Each element must be greater than or equal to ``0``.
Both inputs `x1` and `x2` can not be scalars at the same time.
If ``x1.shape != x2.shape``, they must be broadcastable to a common shape
(which becomes the shape of the output).
out : {None, dpnp.ndarray, usm_ndarray}, optional
Output array to populate.
Array must have the correct shape and the expected data type.
Default: ``None``.
order : {"C", "F", "A", "K"}, optional
Memory layout of the newly output array, if parameter `out` is ``None``.
Default: ``"K"``.
Returns
-------
out : dpnp.ndarray
An array containing the element-wise results. The data type
of the returned array is determined by the Type Promotion Rules.
Limitations
-----------
Parameters `where` and `subok` are supported with their default values.
Keyword argument `kwargs` is currently unsupported.
Otherwise ``NotImplementedError`` exception will be raised.
See Also
--------
:obj:`dpnp.left_shift` : Shift the bits of an integer to the left.
:obj:`dpnp.binary_repr` : Return the binary representation of the input number
as a string.
Examples
--------
>>> import dpnp as np
>>> x1 = np.array([10])
>>> x2 = np.array([1, 2, 3])
>>> np.right_shift(x1, x2)
array([5, 2, 1])
The ``>>`` operator can be used as a shorthand for ``right_shift`` on
:class:`dpnp.ndarray`.
>>> x1 >> x2
array([5, 2, 1])
>>> np.binary_repr(10)
'1010'
>>> np.right_shift(np.array(10), 1)
array(5)
>>> np.binary_repr(5)
'101'
"""
right_shift = DPNPBinaryFunc(
"right_shift",
ti._bitwise_right_shift_result_type,
ti._bitwise_right_shift,
_RIGHT_SHIFT_DOCSTRING,
binary_inplace_fn=ti._bitwise_right_shift_inplace,
)
# bitwise_right_shift is an alias for right_shift
bitwise_right_shift = right_shift