Source code for dpctl.tensor._reduction

#                       Data Parallel Control (dpctl)
#
#  Copyright 2020-2023 Intel Corporation
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

from numpy.core.numeric import normalize_axis_tuple

import dpctl
import dpctl.tensor as dpt
import dpctl.tensor._tensor_impl as ti

from ._type_utils import _to_device_supported_dtype


def _default_reduction_dtype(inp_dt, q):
    """Gives default output data type for given input data
    type `inp_dt` when reduction is performed on queue `q`
    """
    inp_kind = inp_dt.kind
    if inp_kind in "bi":
        res_dt = dpt.dtype(ti.default_device_int_type(q))
        if inp_dt.itemsize > res_dt.itemsize:
            res_dt = inp_dt
    elif inp_kind in "u":
        res_dt = dpt.dtype(ti.default_device_int_type(q).upper())
        res_ii = dpt.iinfo(res_dt)
        inp_ii = dpt.iinfo(inp_dt)
        if inp_ii.min >= res_ii.min and inp_ii.max <= res_ii.max:
            pass
        else:
            res_dt = inp_dt
    elif inp_kind in "f":
        res_dt = dpt.dtype(ti.default_device_fp_type(q))
        if res_dt.itemsize < inp_dt.itemsize:
            res_dt = inp_dt
    elif inp_kind in "c":
        res_dt = dpt.dtype(ti.default_device_complex_type(q))
        if res_dt.itemsize < inp_dt.itemsize:
            res_dt = inp_dt

    return res_dt


[docs]def sum(arr, axis=None, dtype=None, keepdims=False): """sum(x, axis=None, dtype=None, keepdims=False) Calculates the sum of the input array `x`. Args: x (usm_ndarray): input array. axis (Optional[int, Tuple[int,...]]): axis or axes along which sums must be computed. If a tuple of unique integers, sums are computed over multiple axes. If `None`, the sum if computed over the entire array. Default: `None`. dtype (Optional[dtype]): data type of the returned array. If `None`, the default data type is inferred from the "kind" of the input array data type. * If `x` has a real-valued floating-point data type, the returned array will have the default real-valued floating-point data type for the device where input array `x` is allocated. * If x` has signed integral data type, the returned array will have the default signed integral type for the device where input array `x` is allocated. * If `x` has unsigned integral data type, the returned array will have the default unsigned integral type for the device where input array `x` is allocated. * If `x` has a complex-valued floating-point data typee, the returned array will have the default complex-valued floating-pointer data type for the device where input array `x` is allocated. * If `x` has a boolean data type, the returned array will have the default signed integral type for the device where input array `x` is allocated. If the data type (either specified or resolved) differs from the data type of `x`, the input array elements are cast to the specified data type before computing the sum. Default: `None`. keepdims (Optional[bool]): if `True`, the reduced axes (dimensions) are included in the result as singleton dimensions, so that the returned array remains compatible with the input arrays according to Array Broadcasting rules. Otherwise, if `False`, the reduced axes are not included in the returned array. Default: `False`. Returns: usm_ndarray: an array containing the sums. If the sum was computed over the entire array, a zero-dimensional array is returned. The returned array has the data type as described in the `dtype` parameter description above. """ if not isinstance(arr, dpt.usm_ndarray): raise TypeError(f"Expected dpctl.tensor.usm_ndarray, got {type(arr)}") nd = arr.ndim if axis is None: axis = tuple(range(nd)) if not isinstance(axis, (tuple, list)): axis = (axis,) axis = normalize_axis_tuple(axis, nd, "axis") red_nd = len(axis) perm = [i for i in range(nd) if i not in axis] + list(axis) arr2 = dpt.permute_dims(arr, perm) res_shape = arr2.shape[: nd - red_nd] q = arr.sycl_queue inp_dt = arr.dtype if dtype is None: res_dt = _default_reduction_dtype(inp_dt, q) else: res_dt = dpt.dtype(dtype) res_dt = _to_device_supported_dtype(res_dt, q.sycl_device) res_usm_type = arr.usm_type if arr.size == 0: if keepdims: res_shape = res_shape + (1,) * red_nd inv_perm = sorted(range(nd), key=lambda d: perm[d]) res_shape = tuple(res_shape[i] for i in inv_perm) return dpt.zeros( res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q ) if red_nd == 0: return dpt.astype(arr, res_dt, copy=False) host_tasks_list = [] if ti._sum_over_axis_dtype_supported(inp_dt, res_dt, res_usm_type, q): res = dpt.empty( res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q ) ht_e, _ = ti._sum_over_axis( src=arr2, trailing_dims_to_reduce=red_nd, dst=res, sycl_queue=q ) host_tasks_list.append(ht_e) else: if dtype is None: raise RuntimeError( "Automatically determined reduction data type does not " "have direct implementation" ) tmp_dt = _default_reduction_dtype(inp_dt, q) tmp = dpt.empty( res_shape, dtype=tmp_dt, usm_type=res_usm_type, sycl_queue=q ) ht_e_tmp, r_e = ti._sum_over_axis( src=arr2, trailing_dims_to_reduce=red_nd, dst=tmp, sycl_queue=q ) host_tasks_list.append(ht_e_tmp) res = dpt.empty( res_shape, dtype=res_dt, usm_type=res_usm_type, sycl_queue=q ) ht_e, _ = ti._copy_usm_ndarray_into_usm_ndarray( src=tmp, dst=res, sycl_queue=q, depends=[r_e] ) host_tasks_list.append(ht_e) if keepdims: res_shape = res_shape + (1,) * red_nd inv_perm = sorted(range(nd), key=lambda d: perm[d]) res = dpt.permute_dims(dpt.reshape(res, res_shape), inv_perm) dpctl.SyclEvent.wait_for(host_tasks_list) return res